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Abstract  A Z chartcan be used to monitor process quality characteristics. When there is correlation between observations 
of two measurable quality characteristics, X and Y, and there is dependence on the time among observations of X and also Y 
and this structure of correlation and autocorrelation is of a VAR(1) model, it is possible, for a certain false alarm rate, to relate 
the control limit of the Z chart with the variances and covariances of the cross-covariance matrix. This paper proposes a linear 
regression model to determine the control limit of Z chart. The method found in literature for obtaining the control limit of the 
Z chart is lower than the linear regression model proposed in this article; it is more complicated and does not guarantee the 
desired false alarm rate. 
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1. Introduction 
The statistical process control helps managers understand, 

monitor and continuously improve the quality of products 
and services. In the 1930s, Shewhart [1] created the control 
charts to monitor processes, and then recognized the need to 
monitor processes considering the multivariate control. 

The traditional control charts assume by means of 
hypothesis independence among observations of variable 
that one wishes to monitor. However, high production speeds 
generate correlation among the quality characteristics and 
dependence among observations of one quality characteristic 
of neighbor products according to the manufacturing instant 
[2]. Some studies were done in order to evaluate the charts 
performance of multivariate control in autocorrelation 
presence, concluding that there is a drop in these charts 
performance [3-6]. 

The multivariate processes monitoring whose 
observations are autocorrelated appears in recent 
publications. Mastrangelo and Forrest [7] have made 
available a program to generate autocorrelated data where it 
is possible to simulate displacement in value of average of 
variable under monitoring. Pan and Jarrett [8] proposed the 
use of waste of the VAR(p) model to monitor autocorrelated 
processes. The technique requires fitting the model to 
process data for later use of waste in the T2 chart. Arkat [5] 
makes use of artificial neural networks for monitoring  
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multivariate autocorrelated processes. Issam and Mohamad 
[6] propose the use of the SVR (support vector regression) 
method to monitor changes in the mean vector in 
autocorrelated processes through the MCUSUM control 
chart. Hwarng and Wang [9] established the use of neural 
networks that are able to identify shifts in the mean vector of 
autocorrelated processes. There are several other works on 
monitoring autocorrelated processes [10-13]. 

Autocorrelation compromises the use of control chart, for 
false alarms increase when it is disregarded, that is, when the 
control limits are established under hypothesis of 
autocorrelation absence [7, 14-16]. 

Kalgonda and Kulkarni [3] proposed the Z chart to 
monitor two or more quality characteristics for comments 
which follow a VAR(1) model. The advantage of Z chart in 
relation to T2 chart is that it identifies the quality 
characteristic that suffers change in its average value. The 
authors present an empirical procedure to determine the 
control limit (CL) of Z chart. They assume that there is a 
correlation between the observations of X and Y and there is 
dependency in the time between X and Y observations and 
this correlation and autocorrelation structure is of a VAR(1) 
model. This article shows that for this correlation and 
autocorrelation structure there is a linear relationship 
between the CL of Z chart and variances and matrix 
covariance of cross-covariance of X and Y. For a wide range 
of values of cross-correlation and autocorrelations, it was 
obtained is a coefficient for determining the linear 
relationship model higher than 0.95. 

This article aims to present a linear regression model to 
obtain the control limit of the Z chart that ensures the false 
alarm rate desired for a wide range of values of cross 
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correlations and autocorrelations. The only method 
described in the literature for obtaining the CL was the 
Kalgonda and Kulkarni method [3] which, besides 
complicated, almost always gives control limits more spaced 
than it is necessary to meet the desired false alarm rate. 

The paper is organized as follows: it is presented, in 
section 2, the model that describes the quality characteristics 
of a process with cross-correlations and autocorrelations; in 
section 3, the Z control chart; section 4 presents the 
regression model for obtaining the CL of Z chart and 
compares the false alarm rate calculated using the limits 
obtained by regression with the false alarm rate calculated 
using the limits obtained by the method of Kalgonda and 
Kulkarni [3]. 

2. Model Describing the Quality 
Characteristics 

The classical control procedures in multivariate processes 
consider the basic assumption that observations follow a 
multivariate normal distribution and are independent with 
vector of means 0µ and the variance-covariance matrix xΣ . 

0 1, 2,...,t tX e t Tµ= + =        (1) 

where tX represents observations by a vector of order 𝑝𝑝𝑝𝑝1 

(pis the number of variables); te are independent random 
vectors of order 𝑝𝑝𝑝𝑝1 with multivariate normal distribution 
whose mean is zero and variance-covariance matrix eΣ . 

The independence assumption is violated in many 
manufacturing processes, which makes equation (1) 
inadequate to represent such observations. Vector of auto 
regression of first-order, or VAR(1), equation (2), have been 
used to model multivariate processes with temporal 
correlation among observations of a variable and correlation 
among observations of different quality characteristics [2-6, 
9, 17-20]. 

In multivariate autocorrelated processes, the VAR(1) 
model is represented as follows: 

0 1 0( )t t tX X eµ µ−− = Φ − +     (2) 

where tX is the data vector of order 𝑝𝑝𝑝𝑝1; 0µ is the mean 

vector of order 𝑝𝑝𝑝𝑝1 and Φ is a matrix containing 
autoregressive parameters of order p x p and te are 
independent random vectors of order 𝑝𝑝𝑝𝑝1 with multivariate 
normal distribution whose mean is zero and 
variance-covariance matrix eΣ . 

If Φ  is a zero matrix, equation (2) is reduced to equation 
(1), that is, one has the classical model for independent data 
over the time. Otherwise, the data will be dependent over the 
time and the model variation structure is represented by the 
cross-covariance matrix given by equation (3) [21]. 

Under the assumption that the process is stationary

0( )tE X µ= , for all t, cross-covariance matrix will be: 

( )( )´0 0 ( ) 0,1, 2,....t t h xE X X h hµ µ−
 − − = Γ =   (3) 

Being stationary means that 0µ is constant for all tX and 
the cross-covariance matrix does not depend on t, it depends 
only on h which represents the interval over the time and 
between the vector tX and htX − . 

The matrix )(hxΓ is formed by the elements )(hijγ  
given by: 

( )( )´0 0( ) , 1, 2,....,ij it jt hh E X X i j pγ µ µ−
 = − − =  

 (4) 

Since the cross-covariance matrix originally depends on 
the measurement unit of involved variables, sometimes its 
interpretation is not simple. A more convenient way to 
evaluate the relationship of variables in the process is given 
by using the cross-correlation matrix: 

1 1
2 2( ) ( )x xh D h Dρ

− −
= Γ    (5) 

where D is the diagonal matrix formed by the elements
)(hijγ , for all i=j, of matrix )(hxΓ . 

The cross-covariance matrix for h=0, )0(xΓ , whenΦ and 

∑e are known, can be obtained by the ratio of 
Yule-Walker [24]: 

∑+ΦΦΓ=Γ exx
')0()0(    (6) 

Assuming tX  is a data vector with p-varied distribution 
and follow the model described in equation (2), according to 
Kalgonda and Kulkarni [3] and Kalgonda [20], 

[ ]0~ ; (0)t p xX N µ Γ     (7) 

If the process is in statistical control, tX follows a 
multivariate normal distribution with mean vector and 
cross-covariance matrix (0)xΓ . 

3. Z Control Chart 
With the simultaneous use of X charts to control two or 

more quality characteristics, it is possible to identify which 
of them has been affected by the special cause. However, 
when the variables are dependent or correlated, to obtain the 
control limits of the X charts is no longer trivial [22], for the 
probability that the values of X1, X2, ... , Xp, are within the 
control limits is no more given by: 

( )1 pα−       (8) 

where p is the number of variables and α the probability of 
a false alarm. 
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Kalgonda and Kulkarni [3] proposed a control chart called 
a Z chart for monitoring the mean vector of multivariate 
autocorrelated procedures. The chart maintains the overall 
error α and allows the variables identification whose means 
have changed with the emergence of a special cause. The 
authors adapted the statistical control technique of means 
vector for independent observations proposed by Hayter and 
Tsui [25] and considered that autocorrelation in the process 
follows the VAR(1) model. 

At t time instant, the tZ monitoring statistics of Z chart is 

given by 1t i p itZ Max Z≤ ≤=    , where: 

0

,0(0)

;   1, 2,...,  ;   1, 2,...it i
it

ii

XZ i p tµ
γ
−

= = =   (9) 

where itX  is the value of the i-th variable at instant of time 

t and ,0(0)iiγ  is the i-th diagonal element of the cross 
covariance matrix to h=0. 

For a certainα value, the CL of the Z chart is given by: 

0Pr ; 1, 2,..., 1it iZ LC i p µ µ α ≤ = =  = −     (10) 

The process is considered in statistical control if tZ  ≤ LC. 
Otherwise, there is evidence that the mean of at least one of 
the p variables changed. 

The distribution of tZ  statistic is not known; Kalgonda 
and Kulkarni [3] obtained the CL by simulation following 
the steps: 
− Step 1. Generating a large number of vectors (N = 10000) 

with observations according to the standard p-variate 
model ( )( )0; 0t p XX N µ ρ  

; 

− Step 2: Calculating the tZ  statistic for each of the N 
vectors generated in step 1; 

− Step 3 Obtaining the empirical distribution of the tZ
statistic, find the separatrix of order (1−α ) and assign 
this value to the CL. 

The steps described by Kalgonda and Kulkarni [3] almost 
always lead to control limits more widely spaced than 
necessary to meet the desired rate of false alarms (ARLo>
1 α ). The ARLo is the average number of observations 
among false alarms. For independent and uncorrelated 
variables the ARLo = 1 α  [23]. 

To illustrate, let it be the bivariate case (p=2): 

( )0 0,0µ = ; 
1 0.5

0.5 1e
 

Σ =  
 

and 
0.7 0
0 0.7

 
Φ =  

 
, 

then from (6) it has been obtained the cross-covariance 
matrix, 

11 12

21 22

(0) 1.9608 (0) 0.9804
(0)

(0) 0.9804 (0) 1.9608x

γ γ
γ γ

= = 
Γ =  = = 

 (11) 

The method proposed by Kalgonda and Kulkarni [3] 
provides for 0.005α =  a CL of 3.0191. For CL = 3.0191, 
it has been obtained by simulation one ARLo = 261.78. The 
appendix provides details of simulation. 

Because of autocorrelation ARLo does not follow a 
geometrical distribution, for the probability α of false alarm 
is not constant. Depending on the parameters of the VAR(1) 
Model, the CL of Z chart provided by the method of 
Kalgonda and Kulkarni [3] leads to different ARLos. In 
order to solve this problem, this paper proposes a linear 
regression model which provides the CL of Z chart 
corresponding to the desired ARLo (see Figure 1 of section 
4). 

4. Proposed Method 
In order to facilitate the use of the Z chart, the CL values 

were obtained by simulation for a wide range of parameter 
values of autocorrelation matrix and of the covariance matrix 
of bivariate VAR(1) error. Two regression models were 
made, one for ARLo of 200 and another for ARLo of 370. In 
regression models estimation, the CL values were allocated 
to the dependent variable vector and the elements values of 
cross-covariance matrix were allocated to the independent 
vectors matrix. The model fitted to the data providing R2 

values very close to 1, see Tables 2 and 4. Model parameters 
for ARLo of 200 and 370 are shown in Tables 1 and 3, 
respectively. 

Table 1.  Parameters of regression model - ARLo = 200 

 Coefficient Standard error ratio-t p-value 

Constant 3.09844 0.00136 2279.78 <0.00001 

11 (0)γ  -0.0311983 0.00078 -45.92 <0.00001 

22 (0)γ  -0.0317356 0.00067 -47.38 <0.00001 

12 (0)γ  -0.0451218 0.00136 -33.13 <0.00001 

Table 2.  Statistics of the model in Table 1 

Statistics Value 

Sum of squared residuals 0.001 

R-square 0.990 

Statistical F (3.98) 3269.806 

Standard regression error 0.003 

Adjusted R-squared 0.990 

P-value (F) 0.000 

With the values of 11(0)γ , 22 (0)γ  and 12 (0)γ of 
cross-covariance matrix it is possible to obtain the control 
limits of the Z chart. 
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For ARLo=200: 

CL=3.09844- 0.0311983 11(0)γ - 0.0317356 22 (0)γ - 
0.0451218 12 (0)γ                 (12) 

For ARLo=370: 

CL= 3.26113- 0.0247597 11(0)γ -0.0247724 22 (0)γ - 
0.0337868 12 (0)γ                 (13) 

It has also been considered the case where the ARLo is 
equal to 370. The results of regression model are shown in 
Tables 3 and 4. 

Table 3.  Regression model parameters - ARLo = 370 

 Coefficient Standard Error ratio-t p-value 

Constant 3.26113 0.00249 1311.36 <0.00001 

11 (0)γ  -0.0247597 0.00095 -25.99 <0.00001 

22 (0)γ  -0.0247724 0.00096 -25.87 <0.00001 

12 (0)γ  -0.0337868 0.00213 -15.83 <0.00001 

 
 

Table 4.  Statistics of model in Table 3 

Statistics Value 
Sum of squared residuals 0.0169 
R-squared 0.9466 
Statistics F(3. 98) 738.1707 
Standard error of regression 0.0116 
Adjusted R-squared 0.9453 
P-value(F) 0.0000 

4.1. Sensitivity Analysis of the Proposed Method 

To illustrate the use of the proposed method and its 
diagnosticability in the presence of autocorrelation, one 
considers a similar case of bivariate vector as presented in 
Kalgonda and Kulkarni [3]. The results in Figure 1 illustrate 
the ability of the proposed method to evaluate the CL. One 
considers the following scenarios to carry out the analysis: 

ARLo is equal to 200, it has been adopted values a and b 

of matrix 







=Φ

b
a
0

0  ranging from0.2 to 0.8 and values 

ρ  of the matrix 1
1e
ρ

ρ
 

Σ =  
   

equal to 0.3, 0.5 and 0.7. 

In practice these values are unknown; the elements of the 
cross-covariance matrix that depend on a, b and ρ are 
estimated according to equation (6). It is important to notice 
that an interesting subject of research is the study of Z chart 
in multivariate process. 

 
Figure 1.  NMAF = ARLo obtained by regression and Kalgonda method [20] 
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The ARLo values for 48 different scenarios are presented 
in Table B1 of Appendix B and were used in the construction 
of Figure 1. 

From Table B1 and Figure 1, it is observed that the 
regression model in order to obtain the CL is better than the 
Kalgonda and Kulkarni method [3], for it keeps the ARLo 
always close to 200 for all scenarios. 

5. Conclusions 
This paper has presented a method better than the one 

proposed by Kalgonda and Kulkarni [3] for obtaining the CL 
of Z chart. Better in order to provide control limits that lead 
to false alarms rates closer to those desired. The method of 
Kalgonda and Kulkarni [3] provides generally CL values 
larger than the one necessary; this excessive protection 
against false alarms occurrence reduces the control chart 
ability to detect changes in the process. The method 
proposed in this article requires great effort for the 
construction of the linear regression model; however, after 
obtaining it, the calculation of CL of Z chart is immediate. 

Appendix A – Method Used in 
Simulation of Multivariate Temporal 
Series with Generation Process VAR(1) 

Simulation of a multivariate temporal series with p 
dimension and T size: 

1) It is created errors with Gaussian multivariate 
distribution of order p, ( )~ 0;t p ee N Σ , by means of 

multiplication of matrix P of order (p x p) with vector V 
= (v1 , ... , vp) of order (px1), where t

ePP = Σ  and V 
~ N(0,1). 

1

t

p

v
e P

v

 
 =  
  

     (A1) 

For instance, if p=2:  

















=









2

1

2221

11

2

1 0
v
v

pp
p

e
e

t

t        (A2) 

1) The step 1 is repeated T times for generation of a sort of 
errors. 

2) With te values, it is obtained Xt in a recursive way by 
equation A3 turning t=1,2.....,T.  

0 1 0( )t t tX X eµ µ−− = Φ − +    (A3) 

where: Xt is a matrix of order( px 1); xµ is a mean matrix of 

order(p x 1); Φ  is the autocorrelation matrix of order(p x 
p). 

3) With vector generated in (3), it is obtained the statistics

1t i p itZ Max Z≤ ≤=    . 

4) The CL of Z chart is calculated by a binary search until 
the ARLo is equal to the desired value. 

Appendix B –ARLo values 
Table B1.  Comparison of ARLo values based on regression model and on Kalgonda and Kulkarni method [3] 

Scenarios a b ρ  
11(0)γ  22 (0)γ  12 (0)γ  CLRegression ARLo* CLKalgonda ARLo** 

1 0.2 0.2 0.3 1.0417 1.0417 0.3125 3.0188 198.10 3.0215 201.65 
2 0.2 0.2 0.5 1.0417 1.0417 0.5208 3.0094 199.49 3.0097 200.45 
3 0.2 0.2 0.7 1.0417 1.0417 0.7292 3.0000 205.25 3.0009 202.88 
4 0.2 0.4 0.3 1.0417 1.1905 0.3261 3.0134 199.65 3.0158 197.93 
5 0.2 0.4 0.5 1.0417 1.1905 0.5435 3.0036 198.35 3.0108 202.69 
6 0.2 0.4 0.7 1.0417 1.1905 0.7609 2.9938 202.43 3.0061 213.29 
7 0.2 0.6 0.3 1.0417 1.5625 0.3409 3.0010 197.18 3.0057 201.36 
8 0.2 0.6 0.5 1.0417 1.5625 0.5682 2.9907 196.68 2.9870 194.75 
9 0.2 0.6 0.7 1.0417 1.5625 0.7955 2.9805 198.36 3.0132 219.68 
10 0.2 0.8 0.3 1.0417 2.7778 0.3571 2.9617 203.12 3.0076 235.66 
11 0.2 0.8 0.5 1.0417 2.7778 0.5952 2.9509 195.74 2.9907 221.47 
12 0.2 0.8 0.7 1.0417 2.7778 0.8333 2.9402 196.33 3.0107 242.68 
13 0.4 0.2 0.3 1.1905 1.0417 0.3261 3.0135 198.33 3.0301 209.71 
14 0.4 0.2 0.5 1.1905 1.0417 0.5435 3.0037 198.66 3.0053 198.65 
15 0.4 0.2 0.7 1.1905 1.0417 0.7609 2.9939 205.38 2.9982 204.25 
16 0.4 0.4 0.3 1.1905 1.1905 0.3571 3.0074 199.80 3.0314 217.69 
17 0.4 0.4 0.5 1.1905 1.1905 0.5952 2.9967 197.14 2.9901 190.67 
18 0.4 0.4 0.7 1.1905 1.1905 0.8333 2.9859 199.16 2.9878 207.48 
19 0.4 0.6 0.3 1.1905 1.5625 0.3947 2.9939 201.52 3.0230 217.41 
20 0.4 0.6 0.5 1.1905 1.5625 0.6579 2.9820 197.92 3.0185 220.98 
21 0.4 0.6 0.7 1.1905 1.5625 0.9211 2.9701 202.76 2.9804 207.49 
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22 0.4 0.8 0.3 1.1905 2.7778 0.4412 2.9532 200.93 3.0212 243.71 
23 0.4 0.8 0.5 1.1905 2.7778 0.7353 2.9400 196.50 2.9963 230.83 
24 0.4 0.8 0.7 1.1905 2.7778 1.0294 2.9267 198.89 3.0177 262.15 
25 0.6 0.2 0.3 1.5625 1.0417 0.3409 3.0013 199.24 3.0153 208.00 
26 0.6 0.2 0.5 1.5625 1.0417 0.5682 2.9910 198.98 3.0061 205.37 
27 0.6 0.2 0.7 1.5625 1.0417 0.7955 2.9807 196.82 3.0114 220.27 
28 0.6 0.4 0.3 1.5625 1.1905 0.3947 2.9941 200.12 3.0242 220.99 
29 0.6 0.4 0.5 1.5625 1.1905 0.6579 2.9822 202.53 2.9944 205.69 
30 0.6 0.4 0.7 1.5625 1.1905 0.9211 2.9703 198.15 2.9806 205.98 
31 0.6 0.6 0.3 1.5625 1.5625 0.4688 2.9790 198.97 2.9856 203.27 
32 0.6 0.6 0.5 1.5625 1.5625 0.7813 2.9649 199.25 3.0041 221.97 
33 0.6 0.6 0.7 1.5625 1.5625 1.0938 2.9508 199.27 2.9955 236.18 
34 0.6 0.8 0.3 1.5625 2.7778 0.5769 2.9355 200.16 3.0096 253.04 
35 0.6 0.8 0.5 1.5625 2.7778 0.9615 2.9182 194.19 2.9902 243.26 
36 0.6 0.8 0.7 1.5625 2.7778 1.3462 2.9008 193.69 2.9761 244.32 
37 0.8 0.2 0.3 2.7778 1.0417 0.3571 2.9626 203.38 3.0326 251.09 
38 0.8 0.2 0.5 2.7778 1.0417 0.5952 2.9519 197.96 3.0037 232.80 
39 0.8 0.2 0.7 2.7778 1.0417 0.8333 2.9411 194.47 3.0043 235.49 
40 0.8 0.4 0.3 2.7778 1.1905 0.4412 2.9541 202.50 3.0319 250.93 
41 0.8 0.4 0.5 2.7778 1.1905 0.7353 2.9408 194.15 3.0202 249.29 
42 0.8 0.4 0.7 2.7778 1.1905 1.0294 2.9275 193.63 3.0086 249.46 
43 0.8 0.6 0.3 2.7778 1.5625 0.5769 2.9362 199.41 3.0164 261.06 
44 0.8 0.6 0.5 2.7778 1.5625 0.9615 2.9188 196.83 3.0142 263.45 
45 0.8 0.6 0.7 2.7778 1.5625 1.3462 2.9014 193.16 2.9987 265.96 
46 0.8 0.8 0.3 2.7778 2.7778 0.8333 2.8860 201.49 2.9850 270.41 
47 0.8 0.8 0.5 2.7778 2.7778 1.3889 2.8610 196.47 2.9994 297.45 
48 0.8 0.8 0.7 2.7778 2.7778 1.9444 2.8359 202.23 2.9755 298.72 

* ARLo obtained with the CL of regression method (12). 
** ARLo obtained with CL of method proposed by Kalgonda and Kulkarni [3]. 
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