

CONTROLE AUTOMÁTICO DO TEMPO DE UM BANHO EM FUNÇÃO DO FLUXO DA AGUA VISANDO A SUSTENTÁBILIDADE

Marcus Valério Rocha Garcia mvrgarcia70@gmail.com ETEP

Luiz Flavio Parquet luizflavio0710@gmail.com ETEP

Matheus Dantas matheus_167@yahoo.com.br ETEP

Matheus Ferreira Scotton matheusfscotton@hotmail.com ETEP

Luis Filipe de Faria Pereira Wiltgen Barbosa lfwbarbosa@gmail.com ETEP

Resumo: Neste artigo é proposto um controlador automático do tempo de um banho para um uso mais sustentável da agua, tendo como objetivo determinar a quantidade de litros de agua ideal, estipulado pela Sabesp, para um banho. Através de um software criado na plataforma do Arduino o tempo será ajustado automaticamente de acordo com a quantidade de litros gasto durante o banho, podendo incrementar ou não esse tempo. Ao final desse tempo uma eletroválvula será responsável pela interrupção da água. Com esse projeto pretende-se reduzir o consumo de água conscientizando as pessoas a fazerem uso da agua de forma mais sustentável.

Palavras Chave: Automação - Sustentabilidade - Arduino - -

28 · 29 · 30 de OUTUBRO

1. INTRODUÇÃO

Desde 2013, o índice acumulado de chuvas no estado de São Paulo é o menor em 84 anos, dados do Instituto de Astronomia e Geofísica da Universidade de São Paulo (IAG-USP). Com temperaturas elevadas e tempo seco nos últimos dois anos, o consumo de água aumentou, favorecendo a redução do nível de água nos principais reservatórios do estado de São Paulo.

Segundo a Organização das Nações Unidas, uma pessoa pode viver com 110 litros de água por dia. Desconsiderando os vazamentos, o banho se torna o principal vilão quando se trata de desperdício de água. Em um banho de 15 minutos, com o registro meio aberto gastase 135 litros de água, ou seja, valor acima dos 110 litros diários considerados pela ONU. Segundo a própria Sabesp, um banho de 5 minutos é considerado ideal, gastando-se 45 litros de água, reduzindo assim 90 litros de água por banho. (SABESP/2015)

O objetivo deste trabalho é utilizar um microcontrolador (arduino) para fazer o controle do tempo em que o chuveiro ficará em funcionamento, tendo como base o consumo máximo de 45 litros de água por banho. Para este controle, será necessário utilizar um sensor de vazão que irá informar a quantidade de litros que estará sendo gasto, e uma eletroválvula, que será responsável pelo desligamento do chuveiro.

2. FUNDAMENTAÇÃO TEÓRICA

2.1 Arduino

O Arduino é uma plataforma eletrônica de código aberto baseado em hardware e software de fácil utilização. (TAVARES/2013)

A placa (hardware) consiste em um microcontrolador Atmel AVR, com componentes complementares para facilitar a programação e incorporação para outros circuitos. Um importante aspecto é a maneira padrão que os conectores são expostos, permitindo o CPU ser interligado a outros módulos expansivos, conhecidos como Shields.

A parte de programação (software) é feita através de uma multiplataforma desenvolvida pelo próprio fabricante do hardware com possibilidade de ser programado em linguagem JA-VA e C e C++.

A principal finalidade do Arduino num sistema é facilitar a prototipagem, implementação ou emulação do controle de sistemas interativos, a nível doméstico, comercial ou móvel, da mesma forma que o CLP controla sistemas de funcionamento industriais.

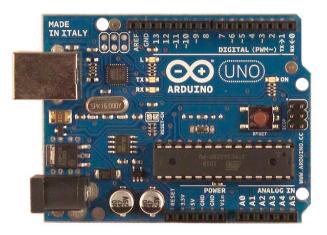


Figura 1 - Placa Arduino UNO

A figura 1 mostra a placa Arduino que será utilizada neste trabalho, a Arduino UNO. Dentre as principais característica da UNO está o uso do microcontrolador ATMEGA328, tensão de operação de 5V, 14 pinos de entrada e saída digital, 6 pinos de entrada e saída analógicas, 32 KB de memória Flash, 2 KB de SRAM, 1 KB de EEPROM e velocidade de clock de 16 MHz. (ARDUINO/2015)

2.1.1. Sketch do Projeto

O Sketch é o firmware que será instalado no microcontrolador, ou seja, é o código que será transferido para o arduino e fará com que o microcontrolador execute as instruções que foram desenvolvidas.

2.2 Sensor de vazão

É um sensor de fluxo de líquido que utiliza um sensor de efeito hall que detecta a rotação de um rotor e gera pulsos proporcionais a velocidade do rotor.

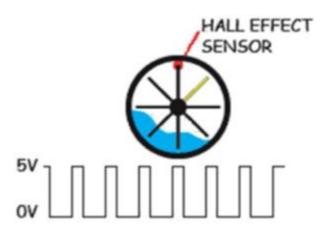


Figura 2 - Funcionamento do Sensor de Fluxo pelo Efeito Hall

A escolha deste tipo de sensor foi feita devido ao fato do mesmo ser robusto, fácil de usar, ter tamanho reduzido e um baixo custo. Vale lembrar que o efeito hall é um conceito antigo, descoberto por Edwin Hall em 1879. (VALÉRIO/2014)

Figura 3 - Medidor de Vazão

Na figura 3 é apresentado o medidor de vazão que será utilizado neste projeto. Abaixo segue os dados técnicos do medidor.

Dados de medidor:

- 3 fios: Vermelho (5V), Preto (GND), Amarelo (sinal de saída);
- Material resistente: Nylon;
- Rosca de 1/2";
- Sinal de saída: Pulsos conforme a velocidade do rotor interno;
- Pulsos: Nível alto 4.5V e Nível baixo 0.5V (quando alimentado a 5V);
- Faixa de Vazão: 1 a 30 litros por minuto;
- Pressão de operação: <=1.75MPa [5].

2.3 Válvula de Entrada de Água Simples

É um produto eletromecânico confeccionado por um corpo plástico cujo sistema de abertra e fechamento é realizado através de bobina elétrica que aciona um embolo metálico, fazendo com que abra quando energizada e feche sem energia. São válvulas eletromagnéticas utilizadas para controlar automaticamente a entrada de água. (EMICOL/2015).

Figura 4 - Válvula de Entrada de Água Simples

A figura 4 mostra a válvula usada no projeto. Esta válvula é da marca EMICOL, sendo uma válvula de duas vias, com acionamento elétrico de 220 Volt.

2.4 Relé

Os relés são chaves que, através de uma pequena corrente em sua bobina pode chavear altas tensões e correntes em seus contatos. (VALÉRIO/2014)

Uma saída de 5V do microcontrolador não é capaz de ligar a solenoide de 220V da válvula de entrada de água, com isso, utiliza-se o relé para fazer esse chaveamento.

Figura 5 - Relé 5 VDC

A figura 5 mostra o Relé com bobina de 5V, com capacidade para chavear a alimentação da válvula de entrada de água, que precisa de 220V para ser acionada.

3. DESENVOLVIMENTO

3.1. Protótipo do projeto

O protótipo do projeto utilizará uma válvula solenoide, medidor de vazão, registro, chuveiro e um módulo eletrônico que será responsável pelo controle do sistema.

28 · 29 · 30 de OUTUBRO

Figura 6- Protótipo

3.1.1. Modo de Operação Segue abaixo o fluxograma do projeto:

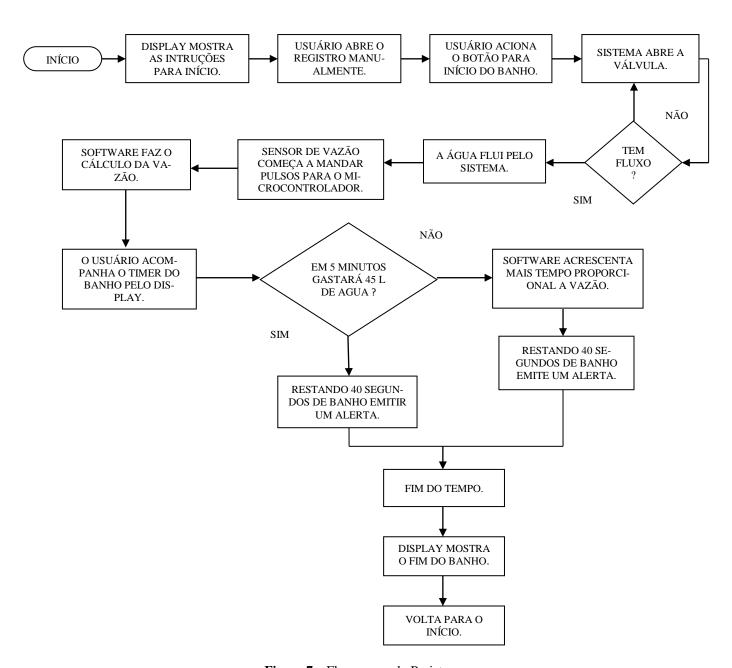


Figura 7 – Fluxograma do Projeto

O fluxograma apresentado na Figura 7, demonstra passo a passo o projeto. Nele é possível verificar de forma visível como se comportará o projeto em condições reais.

3. RESULTADOS

Apesar do protótipo não ter sido testado em uma situação real, ou seja, com uma disponibilidade de água superior a 45 litros, os resultados foram positivos. O teste realizado no protótipo foi ajustado para que o sistema desligasse o chuveiro quando se atingisse 8,1 litros de água, que foi executado com êxito.

Tomando como base o teste feito no protótipo podemos avaliar o projeto como válido, uma vez que basta apenas ajustar o software para que ele realize sua função de acordo com o especificado.

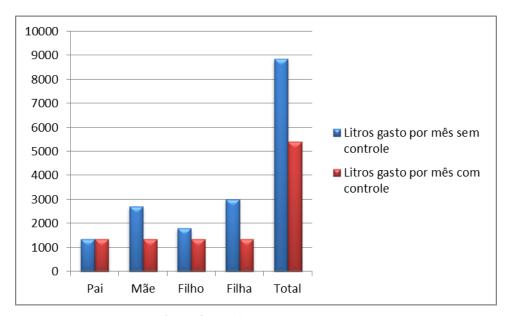


Figura 8 - Gráfico de Consumo

4. CONCLUSÕES

O projeto demonstrou que a redução do consumo de água nas residências pode ser conscientizada através de um sistema automatizado capaz de controlar e informar o tempo necessário para um banho sem desperdício.

Acredita-se que a utilização desse projeto permite a expansão para o uso em locais que necessitem de uma limitação do consumo de água, uma vez que o microcontrolador Arduino utiliza uma plataforma aberta que suporta uma grande variedade de periféricos.

Com isso, pode-se concluir que esse projeto trás benefícios ambientais e econômicos no âmbito residencial e industrial.

REFERÊNCIAS

SABESP 2015, Disponível em: site.sabesp.com.br/site/fale-conosco/faq.aspx?secaoId=134&cid=29

TAVARES, L. A. Uma solução com Arduino para controlar e monitorar processos industriais. Disponível em http://www.inatel.br/pos/index.php/downloads

ARDUINO, 2015. Disponível em: www.arduino.cc/en/Main/arduinoBoardUno

EMICOL, 2015. Disponível em: www.emicol.com.br/?produtos=componentes-para-eletrodomesticos-valvulas-de-entrada-de-agua-simples&cID=3&scID=24&itID=13&go=produtos.

WEBTRONICO, 2015. Disponível em: www.webtronico.com/sensor-de-vaz-o-de-liquido.html

VALÉRIO, R.; GARCIA, M.V.R. Modelo Didático Automatizado de Controle da Vazão de Chuveio Residencial na Educação das Pessoas para o Uso Correto da Água Durante o Banho. VI Seminário Multidisciplinar ENIAC 2014, v. 1, n.6, p 3-8.