

SSA: Turbina de Pelton

Reinaldo Alves Pereira reinaldo.pereira@aedb.br AEDB

Arilson Rocha Nogueira arilson@aedb.br AEDB

Daniela da Silva Barbosa de Sousa daniela.sousa@aedb.br AEDB

Gabriel Gonçalves Pessoa de Castro gabriel.pessoa@aedb.br AEDB

Resumo:O intuito do projeto é a criação de uma bancada didática com turbina de Pelton para facilitar o aprendizado aliando a teoria com a prática, para que os estudantes sejam capazes de dimensionar, entender as máquinas de fluxo e projetá-las. Essa bancada poderá ser utilizada nas aulas de laboratório e apresentações em feiras para demonstrar o funcionamento e a importância das centrais hidrelétricas. A bancada didática com turbina de Pelton desenvolvida, captará a energia mecânica disponível nos rios e usará esse potencial hidráulico para girar a turbina que estará interligada por polias que irá fazer a parte de transmissão da turbina para o alternador gerando energia sustentável podendo ser armazenada em uma bateria de 12v e convertida para 127V e 220V, sendo de fácil entendimento e mobilidade de um local ao outro.

Palavras Chave: Bancada didadica - Turbina de Pelton - Energia - -

1. INTRODUÇÃO

A produção de energia, especialmente no Brasil depende da disponibilidade de recursos hídricos, dada a matriz energética brasileira que depende em 50% da energia hidroelétrica (TUNDISI, 2008). Sendo a água, um recurso natural presente em abundância e essencial para a geração de energia sem aumentar os problemas ambientais.

Segundo Aneel (2008), esse recurso natural é aproveitado desde a antiguidade através da energia hidráulica, é o aproveitamento da energia potencial gravitacional da água, e era usada para gerar energia mecânica nas instalações de moagem de grãos, por exemplo. Já no século XX, passou a ser aplicada como matéria-prima da eletricidade em usinas hidroelétricas.

Nas usinas hidroelétricas as turbinas hidráulicas são as máquinas que transformam a energia hidráulica em trabalho mecânico, que é posteriormente transformando em energia elétrica por meio de um gerador (ABREU K, ROSA H. 2018). As turbinas podem ser de vários tipos e podem possuir classificações como: turbina de reação e turbina de impulso. Para determinar essa classificação de acordo com a aplicabilidade no projeto para que o mesmo funcione adequadamente, utilizasse dados como vazão, pressão, tipo de escoamento.

A bancada didática com turbina de Pelton poderá ser utilizada como ferramenta para a demonstração de como funciona uma usina hidrelétrica, cuja finalidade é a geração de energia. Através dessa demonstração, será possível conhecer o comportamento de uma turbina e a importância dos demais componentes durante o processo. Após finalizada a bancada, a mesma servirá para ensaios experimentais realizando medições, testes para a fixação da teoria, aliando assim, a teoria com a prática.

2. REFERENCIAL TEÓRICO

2.1. HISTÓRICO DA TURBINA

A utilização da energia hidráulica foi uma das primeiras formas de substituição do trabalho animal pelo mecânico, principalmente para o bombeamento de água e moagem de grãos. Dentre as características energéticas mais importantes destacam-se a disponibilidade de recursos, facilidade de aproveitamento e, principalmente, seu caráter renovável.

Com uma representação expressiva na matriz energética mundial e tecnologia de fabricação consolidada, as turbinas hidráulicas não emitem gases poluentes no meio ambiente (JÚNIOR, 2013) e podem ser classificadas como turbinas de ação ou impulso e turbinas de reação, sendo as mais utilizadas Francis, Pelton e Kaplan.

As turbinas Francis são turbinas de reação recebendo o nome do engenheiro inglês James Bicheno Francis, ela foi construída em 1848 sendo um aperfeiçoamento da turbina de Dowd. Possuindo uma eficiência na faixa de 90% ela pode ser utilizada para alturas entre 20 a 700 metros sendo hoje a mais utilizada no mundo.

Turbinas Kaplan, classificadas como turbinas de reação foi desenvolvida pelo engenheiro austríaco Victor Kaplan em 1912 sendo o aperfeiçoamento das turbinas a hélice. Esse tipo de turbina possuí pás móveis as quais permitem uma regulação de acordo com a vazão, podendo ser aperadas normalmente para alturas entre 15 e 40 metros mais com alta vazão (ROCHA, 2015).

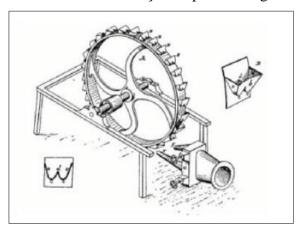
Desenvolvida pelo estadunidense Lester Allen Pelton em 1880 também conhecidas como turbina de Pelton, esse tipo de turbina é classificado como turbina de ação operando para quedas d'água acima de 250 metros para qual a vazão é reduzida. No tópico 3.4 será detalhada a turbina de Pelton que é utilizada nesse projeto.

2.2. USINAS HIDRELÉTRICAS

De acordo com Pereira (2015), o pesquisador francês Fourneyron em 1827, fabricou uma roda sob pressão constante e completamente submersa em que a água entrava sem choque e com baixa velocidade. A roda foi instalada em uma queda de 1,4 metros na ponte sobre o rio Ognon em Haute-Saône e produziu 4,5 kW, obtendo um rendimento de 83%. Essa tecnologia foi aperfeiçoada pelo próprio Fourneyron e por Pelton e Francis nos Estados Unidos.

A primeira usina hidrelétrica entrou em operação nos Estados Unidos em 1882, a Vulcan Street Plant, de 12,5 kW, no Fox Rider em Appleton, Wisconsin. (PEREIRA, 2015)

Segundo o Centro da memória da eletricidade no Brasil, a primeira usina hidrelétrica do país entrou em operação no Ribeirão do Inferno, afluente do rio Jequitinhonha em Diamantina (MG). O engenheiro responsável foi Arthur Thiré e utilizou uma queda de 5 metros de altura com 2 dínamos acionados pela roda d'água de madeira que movimentava duas bombas de desmonte hidráulico que, com jatos d'água, revolviam o terreno rico em diamantes. A energia produzida era usada a dois quilômetros de distância através de uma linha de transmissão.

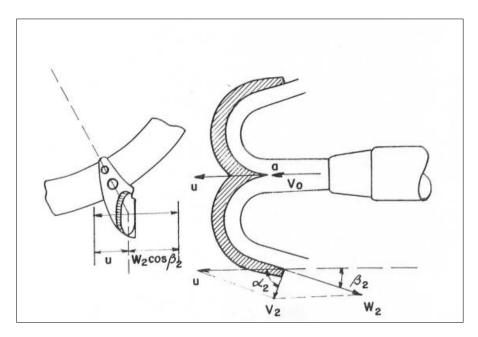

A usina hidrelétrica é uma instalação capaz de converter a energia mecânica da água em energia elétrica, podendo ser definida segundo a Eletrobrás, como um conjunto de obras e equipamentos cuja finalidade é a geração de energia elétrica, através da utilização do potencial hidráulico existente em um rio, sendo este, proporcionado pela vazão hidráulica e pela concentração dos desníveis existentes ao longo do curso de um rio.

2.3. ANÁLISE ENERGÉTICA

A demanda energética de um país está relacionada com a atividade econômica, sendo as hidrelétricas importantes geradoras de energia, proporcionando autossuficiência na geração de energia elétrica a baixos custos e auxiliando no desenvolvimento do país. No Brasil, a produção de eletricidade é proveniente na sua maior parte de usinas hidrelétricas. (BRONZATTI E NETO, 2008)

2.4. TURBINA DE PELTON

A turbina Pelton foi desenvolvida por Allan Lester Pelton pondo o primeiro rotor em funcionamento em 1880, ganhando sua primeira patente no mesmo ano (HAKER INDUSTRIAL). A Figura 1 demonstra a ilustração da patente original.


Figura 1: Ilustração da Patente Original **Fonte**: MSPC, 2013

Como toda turbina hidráulica, a turbina de Pelton é usada em grandes quedas e baixos caudais, ou seja, é uma turbina com uma velocidade específica baixa, constituída de um distribuidor e um receptor. O distribuidor é um bocal, de forma apropriada a guiar a água, proporcionando um jato cilíndrico sobre a pá do receptor, o que é conseguido por meio de uma agulha (agulha de regularização).

O receptor consta de um certo número de pás com forma de concha especial, dispostas na periferia de um disco que gira, preso a um eixo.

A pá possui um gume médio, que fica sobre o plano médio da roda, e que divide simetricamente o jato e o desvia lateralmente. Chamando de U a velocidade da pá, W2 a velocidade relativa da água ao abandoná – la, a velocidade absoluta será V2, que deverá ter uma direção aproximadamente paralela ao eixo da turbina e em ângulo de quase 90° com a velocidade de entrada V0 (MACINTYRE, 1983).

Para um melhor entendimento, a Figura 2 ilustrará o diagrama das velocidades na pá da turbina.

Figura 2: Diagrama das Velocidades na Pá da Turbina de Pelton **Fonte:** MACINTYRE, 1983

Onde:

a = Grau de abertura do sistema diretor de uma turbina

W = Velocidade relativa da corrente fluida

V = Velocidade absoluta

u =Velocidade da pá

 $\beta = \text{Angulo que forma o sentido positivo de } W \text{ com o negativo}$

2.4.1 DETERMINAÇÃO DO NÚMERO DE JATOS

As turbinas Pelton podem ter um ou mais jatos d'água totalizando uma quantidade de seis jatos. A Figura 3 demonstrará uma turbina com apenas um jato.

A incidência de jatos sobre o rotor, em cada volta, depende do número destes, de modo que, quanto maior a queda, menor deverá ser o número de impactos sobre a pá por minuto, do mesmo modo, quanto maior o número de jatos, maior a potência para uma mesma queda e também maior será o desgaste por abrasão, caso a água contiver areia em suspensão (MACINTYRE, 1983).

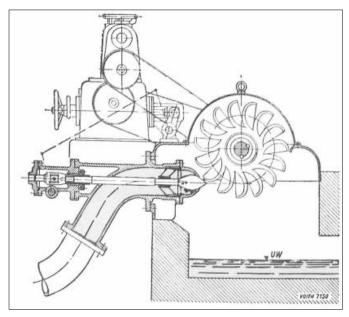


Figura 3: Turbina de Pelton de um Jato

Fonte: MACINTYRE, 1983.

Para calcular a quantidade do número adequado de jatos, utiliza-se a seguinte Equação para determinação número de jatos 2.1, sugerido por Macintyre (1983).

$$a = \left(\frac{n\sqrt{N}}{25H}\right) \tag{2.1}$$

Onde:

n = Rotação em (rpm);

N = Potência(cv);

H = Altura de queda (m).

2.4.2 VELOCIDADE DO JATO

O jato tem sua velocidade (C1) determinado a partir da saída do bocal do injetor em m/s, sendo calculada pela equação, Velocidade do jato 2.2, sugerido por PFleiderer (1979).

$$C1 = \varphi \sqrt{2gH} \tag{2.2}$$

Onde:

 φ = coeficiente de velocidade (0,99)

 $g = \text{gravidade em} (m/s^2)$

H = altura(m)

2.4.3 DIÂMETRO MÁXIMO DO JATO

De acordo com Pfleiderer (1979), o dimensionamento da pá é unicamente calculado através de dados práticos e em função do máximo diâmetro do jato em milímetro (dmax) para que o mesmo atenda corretamente aos parâmetros de trabalho executado pela pá utilizamos a equação para diâmetro máximo do jato 2.3.

$$dm\acute{a}x = 151\sqrt{\frac{N}{(a\,n)}}\tag{2.3}$$

Onde:

N =Potência unitária (cv)

a = Número de jatos

n = Rendimento total da turbina

O mesmo pode ser calculado segundo Macintyre (1983) em função da vazão conforme a equação de diâmetro máximo em função da vazão 2.4.

$$dm\acute{a}x = \sqrt{\frac{4Q}{\pi c_1}} \tag{2.4}$$

Onde:

 $Q = Vazão volumétrica (m^3/s)$

C1 = Velocidade do jato na saída do injetor (m/s)

2.4.4 RODA

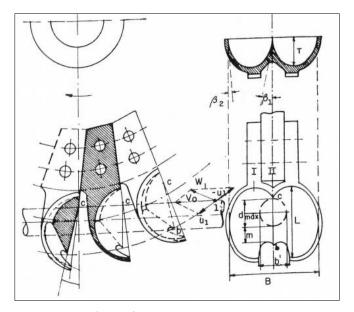
A roda da turbina onde são fixadas as pás, recebem o jato proveniente do injetor. (OST, 2013). O dimensionamento do rotor requer o conhecimento da velocidade periférica da roda (μ 2), com a equação de velocidade periférica 2.5 podemos encontrar a velocidade adequada para a roda.

$$\mu 2 = \frac{\pi . D. n}{6000} \tag{2.5}$$

Onde:

D = Diâmetro do rotor em centímetro;

n = Rpm do motor a ser utilizado;


Onde 6000 é uma constate atingida pelo impulsor estando entre 4000 a 6000 podendo atingir uma média de velocidade equivalente ao valor de 18 a 25 m/s.

2.4.5 DIMENSÕES DA PÁ

A peça da roda Pelton que exige maior cuidado no projeto e na execução é a pá, podendo comprometer o funcionamento da máquina quando fabricado forma incorreta. A mesma possui duas partes côncavas, onde a água age para transformar sua energia cinética em trabalho mecânico e no centro possui um gume para quebrar o choque do jato contra a pá, dividindo o jato em duas partes por igual.

Conforme a figura abaixo nos mostra a forma da pá, vista de frente e em corte, a parte superior do gume, indicada pela letra c, não deve ser atingida pelo jato, no entanto na ponta extrema da pá pratica-se um rasgo com forma de superfície cilíndrica de geratriz paralela à direção da velocidade relativa W1, obtida quando o ponto extremo b do gume toca o jato no

ponto 1. Na figura podemos identificar como obter a direção de W1. O rasgo assim obtido impede que qualquer partícula tenha sua trajetória relativa fora da superfície côncava da pá, (MACINTYRE, 1983)

Figura 4: Pá de turbina de Pelton **Fonte:** MACINTYRE, 1983.

O dimensionamento da pá é feito exclusivamente mediante dados práticos e em função do máximo diâmetro dmáx do jato, tirado da fórmula diâmetro dmáx do jato 2.6.

$$\frac{\pi d^2 2 \, dm \acute{a}x}{4} = \frac{Qi}{a.V0} = \frac{75.Ni}{1.000.\eta.a.V0} \tag{2.6}$$

Em que:

Qi e Ni são: a descarga e apotência unitárias para a sobrecarga máxima, em m^3/s e cv; a é o número de jatos;

Vo a velocidade do jato em m/s

 η o rendimento total da turbina admitindo V0=4,29m/s, obtém-se equação reduzida do diâmetro $dm\acute{a}x$ do jato 2.7:

$$dm\acute{a}x = \frac{151\sqrt{NI}}{a}.\eta \ (mm) \tag{2.7}$$

Para o rendimento total podem – se adotar os seguintes valores:

Tabela 1: Rendimento

ης	5	10	15	20	25	30	35	
η	0,82	0,84	0,85	0,84	0,83	0,81	0,77	

Fonte: Nogueira, 2019

As turbinas Pelton de grandes potências têm rendimento total acima de 90%, chegando mesmo a 94%.

Segundo Macintyre, 1983, para as dimensões principais a prática aconselha:

Tabela 2: dimensões principais

Largura	$B = 2 a 3. dm \acute{a}x$
Comprimento	$L = 2, 25 \text{ a } 2, 8. dm \acute{a} x$
Excesso	$m = 0, 5 a 0, 7. dm \acute{a}x$
Profundidade	$T = 0, 8 \text{ a } 1. dm \acute{a}x$
Largura do rasgo	$b' = 1, 2 \text{ a } 1, 25. dm \acute{a} x$

Fonte: MACINTYRE, 1983.

Ângulo β 1 do gume central = 10°.

A superfície interna assemelha -se a uma semi - elipsoide e sua construção precisa ter um bom acabamento, para reduzir os atritos representado pela constante *K*.

As figuras abaixo representam as pás, mostrando as curvas de nível correspondentes aos cortes e algumas seções planas, de aa e dd.

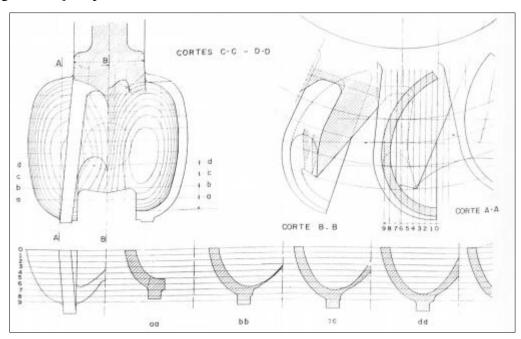


Figura 5: Representação de uma pá de turbina de Pelton

Fonte: MACINTYRE, 1983.

A turbina de Pelton pode variar de peso conforme necessidade, porém se mantendo os devidos dimensionamentos tem-se um bom resultado, o peso incluindo caixa, regulador automático de velocidade, defletores etc., expresso em quilogramas – força por cavalo – vapor produzido, é tanto menor quanto maiores a potência e a queda.

Assim, para diferentes alturas temos:

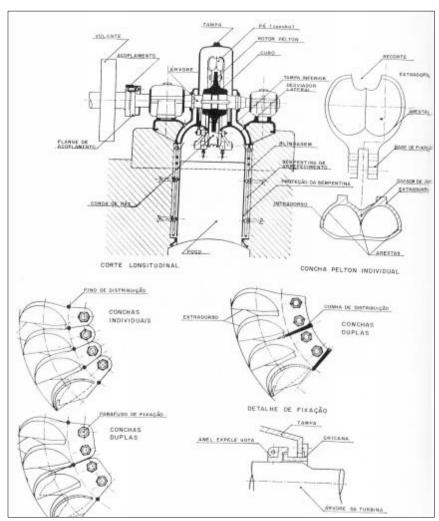


Tabela 3: diferença de altura

Alturas entre 1.000 e 400 m grandes unidades	2,5 a 5,0 kgf/cv
400 a 200m	6 a 7 kgf/cv
Abaixo de 200 m	7 a 30 kgf/cv
Pequenas unidades de 100 a 300 cv	20 a 30 kgf/cv

Fonte: MACINTYRE, 1983.

A imagem a abaixo é representativa aos detalhes da terminologia da turbina de Pelton segundo a TB-74 da ABNT.

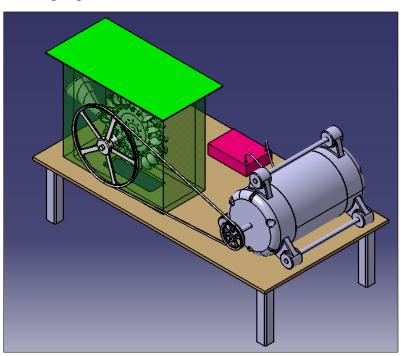
Figura 6: Terminologia turbina de Pelton **Fonte:** MACINTYRE, 1983.

2.5 INDUÇÃO ELETROMAGNÉTICA

A indução eletromagnética é um fenômeno que produz corrente elétrica em um condutor quando este é colocado em um campo magnético que possui uma variação do fluxo magnético que o atravessa. Conforme a Lei de Faraday, a intensidade da força eletromotriz é cada vez maior quanto mais rápido ocorrer a variação do fluxo magnético, (BIANCHINI, 2015).

A geração de corrente alternada pode ser obtida através dos alternadores que possuem como base de funcionamento a indução eletromagnética. De acordo com Wirth (2013), quando o conjunto de espiras gira, também conhecido como armaduras, os seus terminais soldados a

anéis metálicos giram esses anéis também, os quais estão em contato com as escovas. Estas estão ligadas ao circuito que recebe a corrente alternada assim produzida. O conjunto constituído de anéis e escovas denomina-se coletor.


3 DESENVOLVIMENTO DO PROJETO

Visando a sustentabilidade e energia renovável, o projeto tem por finalidade a fabricação e montagem de uma turbina de Pelton onde seja de fácil manuseio e transporte. O uso da turbina pode ser empregado em lugares que possuem escoamento de água, gerando assim, energia suficiente para uso doméstico ou de média escala. O projeto constitui-se de componentes de baixo custo e de fácil acesso.

O desenvolvimento é dividido em seis partes para uma melhor compreensão dos processos realizados, onde a primeira parte apresenta a representação da bancada; a segunda mostra como foi realizado o dimensionamento e a fabricação a turbina Pelton; a terceira apresenta os componentes elétricos; a quarta descreve os componentes mecânicos, a quinta são os procedimentos de montagem e a sexta os testes experimentais.

3.1 REPRESENTAÇÃO DA BANCADA

A bancada didática foi fabricada em função do desenho desenvolvido através do Software CATIA VR5, conforme a Figura 7. Os componentes que acompanham a bancada são: sua base de fabricação metálica, utilizando folha galvanizada, arrebite, metalon, acrílico e o subconjunto de rosca sem fim e porcas de fixação, acrílico para a parede externa da caixa isolante da turbina; Tubulações em PVC; Bico injetor; Redução, cotovelo, mangote flexível de adaptação; Eixo longitudinal e rolamentos para os conjuntos mecânicos e flexíveis. Os componentes elétricos e de conservação de energia utilizados foram: Painel com identificação de voltagem, inversos de voltagem de 12v para 110v; Fios azul, vermelho; Bateria e Dínamo; Turbina e suas pás, tendo a montagem de forma a acoplar um disco de alumínio com as pás de polímero sendo fixadas por parafusos.

Figura7: Representação da bancada **Fonte:** REINALDO, 2019

3.2 DIMENSIONAMENTO E FABRICAÇÃO DO JATO E DA TURBINA

3.2.1 JATO

A realização do dimensionamento do jato é através da fórmula do tópico 2.4.3, calculando assim, o diâmetro máximo do jato 2.3.

$$dmax = 151\sqrt{\frac{N}{a.n}}$$

$$dmax = 151\sqrt{\frac{20}{1.1750}}$$

$$dmax = 16 mm$$
(2.3)

Após a determinação do diâmetro máximo, pode-se calcular a velocidade do jato usando a equação 2.2.

$$C1 = \varphi \sqrt{2gH}$$

$$C1 = 0.99 \sqrt{2(9.81)(21)}$$

$$C1 = 20 \text{ m/s}$$
(2.2)

A velocidade periférica é encontrada através da equação 2.5.

$$\mu 2 = \frac{\pi \cdot D \cdot n}{6000}$$

$$\mu 2 = \frac{\pi \cdot 24.1750}{6000}$$

$$\mu 2 = 21, 99 \approx 22 \text{ m/s}$$
(2.5)

3.2.2 PÁS

As pás em acoplamento com a roda da turbina são as partes principais, sendo necessária uma atenção maior na fabricação e execução da montagem, o bom funcionamento e rendimento da máquina depende exclusivamente da mesma.

A pá possui duas partes côncavas, onde a água em contato transforma a energia cinética em trabalho mecânico. Existe no centro da pá um gume onde a água se choca e se divide para que não se tenha um choque no contato entre água e pá. A junção das pás, roda e o eixo de rotação, constituem o rotor da turbina.

Tendo como base a teoria adquirida em pesquisa para a realização dos cálculos, utilizouse como referências as seguintes medidas: adota-se 12 m/s como referência de rotação de velocidade especifica; Altura da queda de água de 21 m; um jato. Sendo assim, determinado que a velocidade de saída do jato no bico injetor é de 20 m/s, a rotação da máquina de 540 rpm, o diâmetro da 480 mm. Dessa forma, a turbina será funcional.

Considerando o diâmetro de 480 mm e diâmetro máximo do jato de 16 mm, foi necessário utilizar 18 pás.

As pás foram fabricadas de polímero através de impressão 3D, a roda de alumínio fino, para teste foi utilizado um motor de 20 CV, de baixa rotação de 1750 rpm e ter como referência.

Toda a parte elétrica da turbina tem como finalidade transformar o trabalho mecânico gerado em energia elétrica (LISBOA, 2014).

3.3.1 BATERIA

A bateria é um dispositivo eletroquímico que utiliza de reações de oxirredução para produção de elétrons que são resultantes das diferenças de potencial dos elementos envolvidos nas reações.

3.3.2 INVERSOR DE VOLTAGEM

O conversor de voltagem é um dispositivo eletrônico responsável por converter o sinal de CA para CC.

3.3.3 DIAGRAMA ELÉTRICO

Primeiramente para que o alternador comece a gerar energia elétrica, ele precisa da rotação e de uma alimentação de entrada, esta por sua vez, será produzida pela bateria, produzindo assim o campo elétrico e fazendo com que o alternador atue como gerador.

Após o início do funcionamento e o sinal de tensão de saída for maior que a de entrada, o gerador passa a se auto alimentar e recarregar a bateria. As chaves servirão para selecionar o tipo de saída, monofásico (127 V) ou bifásico (220 V).

A saída do alternador é um sinal contínuo após passar pelo regulador de tensão. Essa saída contínua é inserida no conversor de corrente e internamente chaveada e elevada para um nível de tensão alternada útil, sendo ele em sua maioria, 110 ou 220 volts.

Abaixo está a Figura 8 que demonstra o diagrama elétrico.

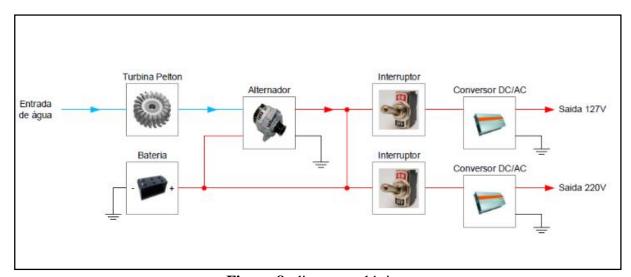


Figura 8: diagrama elétrico Fonte: REINALDO, 2019.

3.4 COMPONENTES MECÂNICOS

Toda a parte mecânica da turbina tem como finalidade receber a energia hidráulica proveniente da água (quedas d'água) e gerar o trabalho para ser convertida em energia elétrica (LISBOA, 2014).

3.4.1 ALTERNADOR

O alternador é um gerador síncrono que utiliza o giro do motor de um determinado equipamento para gerar energia para carregar a bateria do mesmo. Ele transforma a energia cinética (mecânica) em energia elétrica necessária para alimentar os demais equipamentos elétricos que necessite. (PEREIRA, 2012)

A tensão gerada pelo alternador pode variar amplamente devido as varrições do equipamento. O acionamento do alternador possui perdas devido as inércias dos componentes e por isso qualquer redução de massa diminui a potência consumida. (RIGOLETTO, 2013).

3.4.2 ROTOR

O rotor é um dispositivo que gira em torno de um eixo neles é acoplado o sistema de pás onde ocorre a transformação da energia hidráulica em trabalho mecânico (JÚNIOR, 2013).

3.4.3 POLIA

A polia é um componente mecânico muito comum a diversas máquinas, pois é utilizada para transferir força e movimento, é um elemento mecânico circular, com ou sem canais periféricos, acoplada a eixos. Acionada por uma correia, a polia gira junto com um eixo, transferindo movimento e energia a outro eixo. As correias de transmissão são utilizadas para movimentar os acionamentos que exigem desde força e velocidade até sincronismo de movimento e/ou ambas (SILVA et al, 2013).

3.4.4. DISTRIBUIDOR

O distribuidor é um dispositivo mecânico e tem a função de direcionar a água, modificar a vazão transformando total ou parcial a energia de pressão em energia cinética.

4. MONTAGEM DA BANCADA

A montagem da bancada foi realizada conforme a aquisição dos materiais. A primeira parte a ser construída foi a mesa de estrutura metálica, tendo as pernas de sustentação com metalon 15x15 mm e sua parte superior soldada numa folha galvanizada, formando assim a parte superior com um furo oblongo na parte inferior do rotor e tendo a caixa de vedação do rotor montada em folha galvanizada e arrebites para sua fixação. A parte frontal foi construída em acrílico para uma melhor visualização da turbina. A fixação dos dois componentes que formam o rotor (pás construídas em polímero e roda fabricada em alumínio) ocorreu através de rosca sem fim e porcas de 8 mm. Já o acoplamento entre caixa de vedação e rotor foi realizado através de um eixo longitudinal fixando um ao outro de forma a nivelar a rotação do rotor. A polia de transmissão do rotor foi posta no lado externo oposto ao acrílico ligado por uma correia a uma segunda polia acoplada no alternador, onde o mesmo gera energia e armazena em uma bateria, convertendo de 12v para 110 v e ambos fixados na parte superior da bancada em série.

4.1 TESTES COM A BANCADA

Com a bancada de teste é possível simular todo o funcionamento de uma turbina real bem com desenvolver técnicas para melhorar o desempenho e aumentar a geração de energia. Conforme o processo dos testes repetidamente, foram detectadas as devidas falhas e corrigidas. Sequencialmente, testes de funcionalidades da redução e escoamentos de água foram realizados e observando o dimensionamento do jato utilizando a formula de velocidade do jato, velocidade periférica conforme os tópicos já apresentados, corrente elétrica gerada e diferença de potencial, entre outras funcionalidades e ganhos.

5. RESULTADOS E DISCUÇÕES

5.1 POTENCIAL ENERGÉTICO E CUSTO BENEFICIO

Por se tratar de uma turbina didática, a energia gerada pela turbina de Pelton será mínima, porém o intuito é incentivar os estudantes a desenvolver estudos para melhorar o potencial energético e a eficiência de uma turbina de Pelton.

A turbina de Pelton de bancada pode ser construída com materiais reutilizáveis, tendo como premissa o incentivo aos estudantes em desenvolver pesquisas relacionadas ao estudo de máquinas de fluxo bem como no desenvolvimento de materiais e técnicas para aumentar a eficiência das mesmas.

6. CONCLUSÃO

Os principais objetivos deste projeto que consistiam em desenvolver uma bancada didática com turbina de Pelton para facilitar o aprendizado aliando a teoria com a prática, para que os estudantes sejam capazes de dimensionar, entender as máquinas de fluxo e projeta-las foram atendidos.

A realização da bancada disponibilizou conhecimentos sobre modelagem 3D no Catia, o entendimento de alguns conceitos como a indução eletromagnética, a importância de uma turbina no processo de geração de energia elétrica e a construção de um protótipo para simular o funcionamento de uma usina hidrelétrica equipada com a turbina Pelton, assim demonstrando a transformação de energia cinética em energia elétrica pelo alternador.

Cada elemento da turbina foi dimensionado visando a maior eficiência possível para a turbina. O material de fabricação da turbina foi determinado como sendo de uma boa resistência para minimizar os desgastes.

O método de fabricação do rotor foi determinado visando a fácil manutenção das pás separada da roda ao invés da fundição do rotor como um único conjunto.

Dimensionar uma turbina Pelton é uma atividade que exige um estudo dos parâmetros geométricos da turbina, tornando assim, o projeto complexo. Apesar dessa complexidade, o projeto mostrou-se viável por ter materiais e conjuntos disponíveis para a fabricação do mesmo.

7. REFERÊNCIA BIBLIOGRAFICA

ABREU K.M.M.; ROSA H.M.P. Algoritmo para determinação de grandezas geométricas de uma turbina Pelton. The Journal of Engineering and Exact Sciences – JCEC, v. 1, 04 n. 02, 2018.

ANEEL. Atlas de Energia Elétrica do Brasil. Capítulo 3, Energia Hidráulica. Parte II Fontes renováveis. 2008, p. 52

BIANCHINI D. Conhecimentos Técnicos - Piloto Privado. Editora Bianch. Secção 22, 2015

BRONZATTI L. F.; NETO I. A. Matrizes energéticas no brasil: cenário 2010-2030. XXVIII Encontro Nacional de Engenharia de Produção – Enegep 2008. p. 2-8.

CENTRO DA MEMÓRIA DA ELETRICIDADE NO BRASIL. Experiências e empreendimentos pioneiros. <Disponível em: https://portal.memoriadaeletricidade.com.br/historia-do-setor-eletrico/1879-1896-experiencias-e-empreendimentos-pioneiros/> . <Acesso em: 15 de maio de 2019>.

ELETROBRÁS. Centrais Elétricas Brasileiras S.A. <Disponível em: http://www1.furnas.com.br/hotsites/sistemafurnas/usina_hidr_funciona.asp> . <Acesso em: 14 de maio de 2019.

JÚNIOR S. L. R. Projeto conceitual de uma turbina hidráulica a ser utilizada na usina hidrelétrica externa de Henry Borden. Universidade federal do Rio de Janeiro. Departamento de Engenharia Mecânica, 2013

MACINTYRE A. J. Máquinas Motrizes e Hidráulicas, 1983

OST P. A.; KRAULICH V. C. Dimensionamento e modelagem de um rotor de turbina pelton para ser aplicado em uma bancada didàtica. FAHOR – Faculdade de Horizontina, 2013

PFLEIDERER C; PETERMANN H. Máquinas de Fluxo, 1979

PEREIRA M. G. Projeto de Usinas Hidrelétricas: passo a passo. Oficina de Textos, 2015, p. 12-13

PEREIRA W. B. Estudo da viabilidade do uso de alternadores como motores em veículos elétricos. Tcc em engenharia elétrica. Universidade federal do Rio de janeiro. 2012

RIGOLETTO K. R. et al. Otimização da polia do alternador para motores automotivos de veículos de passeio. Congresso Brasileiro de Engenharia de fabricação, 2013

ROCHA G. B. Construção de uma bancada de teste de turbina Kaplan no laboratório de termo ciências da FGA. Monografia (curso de graduação em Engenharia de Energia). Universidade de Brasília, 2015

SILVA A. M. et al. Otimização da polia do alternador para motores automotivos de veículos de passeio. Congresso Brasileiro de Engenharia de fabricação, 2013

TUNDISI, J. G. Recursos hídricos no futuro: problemas e soluções. Estudos avançado, 2008, p. 13

WIRTH A. Eletricidade e Eletrônica Básica - 4ª Edição Revisada. Alta Books Editora, 2013, p. 58

LISBOA C. P. et al. Projeto de construção de uma bancada didática com turbina do tipo Pelton para aplicação de ensino em engenharia. Faculdade de Horizontina, 2014