Aplicação dos Métodos CRITIC e MOORA para a escolha de uma empilhadeira semielétrica.

Guilherme Nascimento Araújo guilherme1803gui@gmail.com UFCG

João Cavalcanti Neto joaonetojundia1020@gmail.com UFCG

Alexandre Chaves Araújo alexandrechaves879@gmail.com UFCG

Daniel Augusto de Moura Pereira danielmoura@ufcg.edu.br UFCG

Marcos dos Santos marcosdossantos_doutorado_uff@yahoo.com.br UFF

Resumo: Este artigo apresenta uma abordagem para a seleção de uma empilhadeira semielétrica usando os métodos multicritério CRITeria Importance Through Intercriteria Correlation (CRITIC) e Multi Objective Optimization on basis of Ratio Analysis (MOORA). O CRITIC é usado para determinar a importância relativa dos critérios, levando em consideração suas interações, enquanto o MOORA classifica as alternativas com base em seu desempenho em relação aos critérios estabelecidos. Esses métodos permitem uma análise objetiva e sistemática, evitando a subjetividade no processo de tomada de decisão. Dessa forma, utilizou-se de critérios como Carga máxima (kg), Peso do equipamento (kg), Preço (R\$), Altura máxima de elevação (m), para obtenção da empilhadeira semielétrica mais indicada. A partir desses dados, foi obtida como a alternativa mais indicada a Paletrans Le 1026C, como alternativa menos indicada está a Bremem 5970.

Palavras Chave: CRITIC - MOORA - Multicritério - Empilhadeira - Tomada de decisão

1. INTRODUÇÃO

Escolher o equipamento certo é fundamental para o sucesso operacional e financeiro de qualquer empresa. Tendo em vista que, segundo Peniwati (2006), existem vários ramos que estão envolvidos no processo de tomada de decisão, como intelectual, psicológico e influências no entorno do tomador de decisão. Wierzbicki (1997) também aponta a compreensão intuitiva e a experiência prática como fatores importantes durante o processo de tomada de decisão

Com isso, os Métodos Multicritérios de Apoio a Tomada de Decisão (AMD) surgem como alternativas que buscam auxiliar os decisores em processos de análise e tomada de decisão avaliando as alternativas a partir de múltiplos critérios, de forma que seja possível identificar as preferências do decisor, utilizando as informações obtidas para a estruturação de um modelo de preferências (CINELLI, 2017).

A utilização de métodos multicritérios como CRITIC e MOORA traz diversas vantagens ao processo de tomada de decisão. Em primeiro lugar, esses métodos permitem uma análise objetiva e sistemática dos critérios relevantes, evitando subjetividade e viés na atribuição de pesos aos fatores considerados. O resultado é uma decisão mais confiável e robusta baseada em critérios bem definidos e devidamente ponderados.

Além disso, ao considerar múltiplos critérios simultaneamente, os métodos multicritério permitem uma visão abrangente e holística das alternativas disponíveis. Desta forma, é possível ter em conta vários aspetos como a capacidade de carga, peso do equipamento, preço, altura entre outros, e tomar uma decisão informada de acordo com as necessidades específicas da empresa.

Dada a complexidade da escolha de uma empilhadeira semielétrica, este trabalho propõe o uso dos métodos CRITIC e MOORA como uma abordagem integrada para selecionar a empilhadeira semielétrica mais adequada.

2. REFERENCIAL TEÓRICO

2.1. TOMADA DE DECISÃO

As decisões são tomadas nas mais complexas hierarquias e aplicadas nos diversos níveis organizacionais das empresas. Nessa perspectiva, a tomada de decisão seria uma oportunidade em que um decisor se depararia com diversas opções onde teria que escolher com relação a critérios, objetivos ou incertezas, de modo que teria que transformar a informação e escolhendo a que melhor corresponde à questão dada (HARRIS, 2012).

Fulop (2005), aponta que diante de diversos critérios, é necessário utilizar as técnicas e ferramentas de análise multicritério para atingir o resultado máximo esperado. Portanto, faz-se necessário o uso de ferramentas devido ao elevado número de critérios.

A análise dos autores incluídos mostra que qualquer abordagem traz o mesmo resultado, a tomada de decisão adequada requer o uso de soluções racionais. Decidir sobre um cenário leva a um maior sucesso, conforme medido pelo tomador de decisão.

2.2. MÉTODO CRITIC

Foi utilizado o método *CRITeria Importance Through Intercriteria Correlation* (CRITIC), foi proposto por Diakoulaki, Mavrotas e Papayannakis em 1995, é usado principalmente determinar o peso dos atributos. Atualmente, no método atual, não existem contradições entre os atributos, de forma que os pesos dos atributos são determinados usando matriz de decisão. O método CRITIC inclui os seguintes recursos:

- Não há necessidade de independência de atributos;
- Atributos qualitativos são transformados em atributos quantitativos.

A matriz de decisão é baseada na inserção do método e alternativas e os atributos são baseados nas informações recebidas do tomador de decisão, conforme especificado na equação abaixo.

$$X = \begin{bmatrix} r_{11} & \cdots & r_{1j} & \cdots & r_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ r_{ij} & \cdots & r_{ij} & \cdots & r_{in} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ r_{m1} & \cdots & r_{mj} & \cdots & r_{mn} \end{bmatrix}_{mn}; i = 1, \dots, n$$

Onde r_{ij} indica o elemento da matriz de decisão para ith alternativa em jth atributo.

Passo 1: A Matriz de Decisão Normalizada:

A fim de normalizar os atributos positivos e negativos da matriz de decisão, são utilizadas, respectivamente.

Atributos positivos:

$$X_{ij} = \frac{r_{ij} - r_i^-}{r_i^+ - r_i^-}; \quad i = 1, ..., m, \quad j = 1, ..., n \quad (1)$$

Atributos negativos:

$$X_{IJ} = \frac{r_{ij} - r_i^+}{r_i^- - r_i^+}; \quad i = 1, ..., m, \quad j = 1, ..., n \quad (2)$$

Onde X_{ij} representa um valor normalizado da matriz de decisão, para ith alternativa jth e r_i^{maior} = máx $(r_1, r_2, ..., r_m)$ e r_i^{menor} = min $(r_1, r_2, ..., r_m)$.

Passo 2: O Coeficiente de Correlação:

O coeficiente de correlação entre atributos é determinado pela equação (3).

$$\rho_{jk} = \frac{\sum_{i=1}^{m} (x_{ij} - \overline{x}_j) \cdot (x_{ik} - \overline{x}_k)}{\sqrt{\sum_{i=1}^{m} (x_{ij} - \overline{x}_j)^2 \cdot \sum_{i=1}^{m} (x_{ik} - \overline{x}_k)^2}}$$
(3)

Onde $\bar{\mathbf{x}}_j$ e $\bar{\mathbf{x}}_k$ representam a média dos atributos jth e kth. $\bar{\mathbf{x}}_j$ é calculado a partir de equação abaixo. Da mesma forma, é obtido para $\bar{\mathbf{x}}_k$: Além disso, ρ_{jk} é o coeficiente de correlação entre os atributos jth e kth.

$$\overline{x}_j = \frac{1}{n} \sum_{i=1}^n X_{ij}; \quad i = 1, ..., m$$
 (4)

Passo 3: O Índice (C):

Em primeiro lugar, o desvio padrão de cada atributo é estimado pela equação (5).

$$\sigma j = \sqrt{\frac{1}{n-1} \sum_{j=1}^{n} (x_{ij} - \overline{x}_j)^2}; \quad i = 1, ..., m \quad (5)$$

Depois, o índice (C) é calculado usando equação (6).

$$C_j = \sigma j. \sum_{k=1}^{n} (1 - \rho j k); \ j = 1, ..., n (6)$$

Passo 4: O Peso dos Atributos:

Os pesos dos atributos são determinados pela equação (7).

$$W_{j} = \frac{C_{j}}{\sum_{j=1}^{n} C_{j}}; \quad j = 1, ..., n$$
 (7)

Os pesos atribuídos são organizados e aplicados no método Moora para ranqueamento das alternativas.

2.3. MÉTODO MOORA

O método multicritério MOORA (Multi-Objective Optimization on the basis of Ratio Analisys) segundo Brauers e Zavadskas (2006), tem como objetivo avaliar as alternativas em sua totalidade, elevando ao quadro todos os dados, estes são divididos pela soma dos dados ao quadrado como denominadores, e por fim, os dados são situados entre zero e um para a elaboração do ranking.

Este método, conforme relatado por Villa et al., (2019), utiliza uma estrutura multiplicativa completa e técnica de dominância para gerar um índice de classificação. O método é baseado na estrutura apropriada da matriz de decisão X, onde cada elemento da matriz de decisão X, ij indica uma classificação alternativa i no atributo j, seja i= 1,2, ..., m e j = 1, 2, ..., n. Portanto, a matriz de decisão é definida como: $X = [X_{ij}]_{-}((m*n))$.

O método em foco, segue o seguinte roteiro, a partir da Equação 8;

$$N^{xij} = \left(\frac{X_{ij}}{\sqrt{\sum_{j=1}^{m} X_{ij}^2}}\right). P_n$$
 (8)

Sendo:

 X_{ij} : resposta j para a alternativa do objetivo i.

j: alternativa do modelo.

i: objetivos.

 N^{xij} : resultante normalizada da alternativa j em relação ao objetivo i.

 P_n : peso indicado pelo decisor.

Otimizando o modelo, temos:

$$N_{yj} = \sum_{i-1}^{i-g} N^{X_{if}} - \sum_{i-g+1}^{i=n} N^{X_{ij}}$$
 (9)

Onde:

i = 1,2,..., g para objetivos monotônicos de benefício.

i = g+1,g+2, ..., n para objetivos monotônicos de custo.

 N_{yi} : normalização da alternativa j (performance: 0 a 1).

Após utilizar a Equação 8 para normalizar e ponderar pelos respectivos pesos, utilizase a Equação 9 para se obter o N_{vi} e realizar assim o ordenamento.

2.4. EMPILHADEIRA

Segundo Hildinger (2022), historicamente, a movimentação de cargas era uma atividade central sociedade e para o homem. Seja na construção civil, indústria, portos, nas ferrovias, na agricultura ou nos centros de distribuição é preciso usar recursos que possibilitam o levantamento e transporte de diversos tipos de cargas. Empilhadeiras são dispositivos específicos para movimentação de cargas em armazéns ou armazéns, têm capacidade de carga variando de 0,6 t a 6,0 t em linhas produção normal.

2.4.1. EMPILHADEIRA SEMIELÉTRICA

A empilhadeira semielétrica utiliza baterias recarregáveis como fonte de combustível, onde a mesma é projetada para empresas que tenha um processo interno de armazenamento e logística interno, independentemente do porte dessa empresa. A empilhadeira semielétrica vem ganhando grande destaque por atender perfeitamente às necessidades de armazéns, supermercados, fábricas e indústrias. Além disso, também possuem movimentos mais eficientes, devido as suas pequenas dimensões quando comparadas com outros tipos de empilhadeiras, além de maior facilidade de operação, manutenção e mais agilidade.

3. METODOLOGIA

O presente artigo demonstra a seleção da melhor empilhadeira semielétrica a partir da utilização de critérios quantitativos. O fluxo metodológico expresso na Figura 1 retrata como foi realizado a presente aplicação.

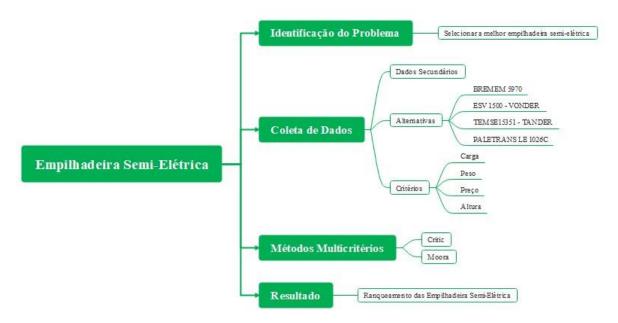


Figura 1: Fluxo metodológico

Fonte: Autores (2023)

A primeira etapa da metodologia se deu a partir da identificação do problema principal, que nesse caso consistiu na necessidade de escolha da melhor empilhadeira semielétrica do mercado, com a finalidade de auxiliar empreendimentos que necessitam desse equipamento para a execução do seu processo produtivo.

Na segunda etapa, foram realizadas pesquisas em base de dados secundárias, como sites de fabricantes e blogs. Com isso, foram definidos as alternativas e os critérios. As alternativas encontradas foram: BREMEM 5970 (Imagem A), ESV 1500 – VONDER (Imagem B), TEMSE15351 – TANDER (Imagem C), PALETRANS LE 1026C (Imagem D), conforme exemplifica a Figura 2. Já os critérios encontrados foram: Carga máxima (kg), Peso do equipamento (kg), Preço (R\$), Altura máxima de elevação (m).

Figura 2: Alternativas **Fonte:** Autores (2023)

Por último, realizou-se a aplicação dos métodos CRITIC e MOORA para obtenção da melhor alternativa entre as listadas. Para isso, foi obtido através do CRITIC os pesos de cada critério necessários para a aplicação do MOORA, que por sua vez, indicou qual a melhor alternativa.

4. RESULTADOS

4.1. APLICAÇÃO DO CRITIC

Para aplicação do método CRITIC, foram utilizadas quatro alternativas, e quatro critérios, dos quais, Peso da máquina (Kg) e Preço (R\$) se caracterizam como monotônicos de custo, ou seja, quanto menor melhor, enquanto Carga máxima (kg) e Altura máxima de elevação (m) se caracterizam como monotônicos de benefício, ou seja, quanto maior melhor. A Figura 3 demostra a matriz obtida após a coleta das informações.

CRITIC - Criteria Importance Throught Intecriteria Correlation				
TIPO	MAX	MIN	MIN	MAX
	Carga (Kg)	Peso (Kg)	Preço (R\$)	Altura (m)
Bremem 5970	1000	350	23900	3
ESV 1500 - VONDER	1500	505	25800	3,5
TEMSE15351 - Tander	1500	430	18441	3,5
Paletrans Le 1026C	1000	146	20625	2,6

Figura 3: Tabela CRITIC com alternativas e critérios

Fonte: Autores (2023)

Após o processamento dos dados, foi obtida a matriz normalizada, conforme exemplifica a Figura 4:

	c1	c2	c3	c4
Bremem 5970	0,000	0,432	0,258	0,444
ESV 1500 - VONDER	1,000	0,000	0,000	1,000
TEMSE15351 - Tander	1,000	0,209	1,000	1,000
Paletrans Le 1026C	0,000	1,000	0,703	0,000

Figura 4: Matriz normalizada

Fonte: Autores (2023)

Com isso, obtêm-se a matriz de correlações entre atributos ajustados, conforme exemplifica a Figura 5.

	c1	c2	c3	c4
C1	0,000	1,819	0,975	0,073
C2	1,819	0,000	0,621	1,961
C3	0,975	0,621	0,000	1,129
C4	0,073	1,961	1,129	0,000

Figura 5: Matriz de correlação entre atributos ajustados.

Fonte: Autores (2023)

Por fim, foram gerados os pesos de cada critério, como mostra a Figura 6.

С	W	Ranking
1,655	26,27%	2
1,897	30,10%	1
1,218	19,33%	4
1,532	24,31%	3

Figura 6: Peso dos critérios.

Fonte: Autores (2023)

Conforme exemplifica a Figura 6, o ordenamento dos critérios se deu da seguinte forma: Peso (Kg), Carga (Kg), Altura (m) e Preço (R\$). Dessa forma, o CRITIC apresentou como critério mais relevante o Peso (Kg), já o que apresentou menor relevância foi o Preço (R\$).

4.2. APLICAÇÃO MOORA

Para aplicação do método MOORA, foi utilizado os mesmos dados processados pelo método CRITIC. Dessa forma, utilizou-se das mesmas alternativas e mesmos critérios, dos quais, Peso da máquina (Kg) e Preço (R\$) se caracterizam como monotônicos de custo, ou seja, quanto menor melhor, enquanto Carga máxima (kg) e Altura máxima de elevação (m) se caracterizam como monotônicos de benefício, ou seja, quanto maior melhor. Além desses dados, foi utilizado também os pesos dos critérios gerados pelo método CRITIC.

Peso	26,27%	30,10%	19,33%	24,31%
Tipo	MAX	MIN	MIN	MAX
Про	Carga (Kg)	Peso (Kg)	Preço (R\$)	Altura (m)
Bremem 5970	1000	350	23900	3
ESV 1500 - VONDER	1500	505	25800	3,5
TEMSE15351 - Tander	1500	430	18441	3,5
Paletrans Le 1026C	1000	146	20625	2,6

Figura 7: Tabela MOORA com alternativas e critérios

Fonte: Autores (2023)

Na sequência, foi obtida a matriz normalizada e ponderada, conforme exemplifica a Figura 8.

	Carga (Kg)	Peso (Kg)	Preço (R\$)	Altura (m)
Bremem 5970	0,1030	0,1379	0,1032	0,1149
ESV 1500 - VONDER	0,1546	0,1990	0,1115	0,1341
TEMSE15351 - Tander	0,1546	0,1694	0,0797	0,1341
Paletrans Le 1026C	0,1030	0,0575	0,0891	0,0996

Figura 8: Matriz normalizada

Fonte: Autores (2023)

Por fim, foi obtido o ordenamento da melhor empilhadeira semielétrica.

S(x)	Ranking
-0,0232	4
-0,0217	3
0,0396	2
0,0560	1

Figura 9: Ranqueamento

Fonte: Autores (2023)

A Figura 8 demostra o ordenamento final, que se deu da seguinte forma: PALETRANS LE 1026C, TEMSE15351 – TANDER, ESV 1500 – VONDER e BREMEN 5970. Com isso, as modelagens indicam como melhor alternativa a PALETRANS LE 1026C e como pior a alternativa a BREMEN 5970.

6. CONSIDERAÇÕES FINAIS

Com essa abordagem, espera-se que empresas possam selecionar uma empilhadeira semielétrica que atenda não apenas aos requisitos operacionais, mas também aos objetivos estratégicos, como redução de custos operacionais, aumento da segurança e proteção do operador.

Além disso, este trabalho obteve como resultado a empilhadeira semielétrica mais indicada, que nesse caso foi a Paletrans Le 1026C, como consequência dessa modelagem, também é obtida a alternativa menos indicada, que nesse caso, foi a Bremem 5970.

Com isso, este trabalho além de retirar a subjetividade desse tipo de decisão, também contribui para a popularização e uso de métodos multicritérios no campo da pesquisa aplicada, fornecendo um exemplo concreto de como essas técnicas podem ser utilizadas para resolver problemas de tomada de decisão.

Em resumo, a importância deste trabalho parte de selecionar a empilhadeira semielétrica certa, utilizando os métodos multicritério CRITIC e MOORA. Com essa abordagem, as empresas poderão tomar decisões mais informadas, considerar os diferentes processos envolvidos e encontrar opções de equipamentos eficientes e compatíveis com suas necessidades e objetivos.

7. REFERÊNCIAS

Brauers, W. K. M. e Zavadskas, E. K. (2006). The MOORA method and its application to privatization in a transition economy. Control and Cybernetics, 35(2):445-469.

CINELLI, M. The Art of Supporting Decision-Making. Exchanges: The Interdisciplinary Research Journal, v. 4, n. 2, p. 298, 2017.

Forman,E., Peniwati,K., 1998, "Aggregating individual judgements and priorities with the Analytic Hierarchy Process", European Journal of Operational Research, Vol. 108, pp.165-169.

FULOP, J. Introduction to decision making methods. [S.1]: Hungarian Academy of Sciences, 2005.

HARRIS, R. Introduction to decision making. Virtual Salt, 2012.

Hildinger, Júlia Berdyj. Avaliação e caracterização do pigmento inorgânico utilizado em elastômero de poliuretano aplicado em rodas de empilhadeira. Orientador: Claudia Merlini. 2022. 75. TCC (graduação) - Engenharia de Materiais, Centro Tecnológico, de Ciências Exatas e Educação, Universidade Federal de Santa

Catarina, Blumenau. 2022 Disponível em: https://repositorio.ufsc.br/handle/123456789/243679 Acesso em: 12/06/2023.

VILLA, A. J. et al. Una revisión de literatura de 1980 a 2018 de los métodos Multi-criterio. MundoFesc, v. 9, n. 18, p. 89–102, 2019.

Wierzbicki, **A.**, 1997, "On the role of intuition in decision-making and some ways of multicriteria aid of intuition", Journal of Multi-Criteria Decisions Analysis, Vol.6, pp. 65-76.